

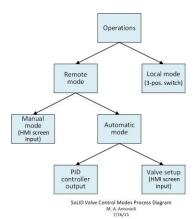
Detector Support Group

We choose to do these things "not because they are easy, but because they are hard".

Weekly Report, 2021-07-21

Summary

Hall A - GEM


Mary Ann Antonioli, Peter Bonneau, Brian Eng, George Jacobs, Mindy Leffel, Tyler Lemon, Marc McMullen

• Verified the completion time for SBS detector assembly in the EEL cleanroom: mid to late August; this will determine the start time for RICH-II assembly

Hall A - SoLID

Mary Ann Antonioli, Pablo Campero, Mindy Leffel, Marc McMullen

- Calculated power consumption for devices in Instrumentation Racks #1 and #2
 - **★** Generated spreadsheet with detailed calculations for the power required for each device for 5 VDC and 24 VDC
- Updated Cable List spreadsheet
 - ★ Added base specification required for cables to connect Macro Sensors Low Voltage Conditioner (LVC-2412) to local volt-meter
 - **★** Added total length required for cables of the same type and specification
- Generated, using Visio, first draft of Cryo Control Reservoir (CCR) and Heat Exchanger (HX) valves control modes process diagram

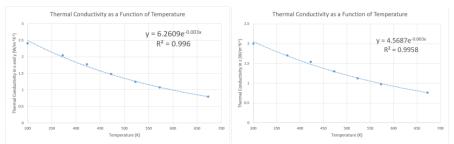
First draft of CCR and HX valves control modes process diagram

Hall B – RICH-II

Mary Ann Antonioli, Peter Bonneau, Pablo Campero, George Jacobs, Tyler Lemon

- Conducted, using Ansys, a steady-state thermal analysis of heat dissipation on the electronic panel
- Developing air cooling P&I diagram and components list
- Developing hardware interlock system program
 - **★** Completed sbRIO FPGA code to read the SHT35 sensors
 - **★** Completed temperature and humidity monitoring and interlocks
 - **★** Coding for monitoring and interlocking gas system and air cooling

Detector Support Group

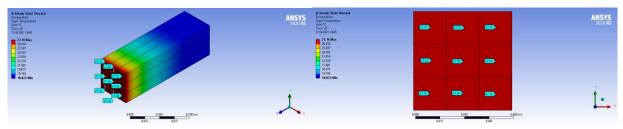

We choose to do these things "not because they are easy, but because they are hard".

Weekly Report, 2021-07-21


Hall C - NPS

Mary Ann Antonioli, Peter Bonneau, Aaron Brown, Pablo Campero, Brian Eng, George Jacobs, Mindy Leffel, Tyler Lemon, Marc McMullen

• Researching thermal properties of PbWO₄ crystal; generated graphs showing temperature dependence of thermal conductivity and specific heat capacity



Plots showing thermal conductivity in x- and y-directions (left) and z-direction (right) as a function of temperature

Plot showing specific heat capacity of PbWO₄ crystal as a function of temperature

• Using Ansys, conducted a thermal analysis of a 3x3 block of PbWO₄ crystals with a heat load of 1 W applied to each crystal

3x3 block of PbWO₄ crystals with 1 W of heat applied to each crystal

- Revised LabVIEW code to make the average of all temperatures within the front and back of the crystal zone a rolling average
- Reviewed interlock override design
- Stress tested potting of the pins for a spare Radiall 52-pin connector; pins did not move

EIC

Brian Eng

Changed beam pipe into a dynamic component